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Abstract

We consider the problem of computing L1-distances
between every pair of probability densities from a given
family, a problem motivated by density estimation [15].
We point out that the technique of Cauchy random
projections [10] in this context turns into stochastic
integrals with respect to Cauchy motion.

For piecewise-linear densities these integrals can be
sampled from if one can sample from the stochastic
integral of the function x 7→ (1, x). We give an
explicit density function for this stochastic integral
and present an efficient (exact) sampling algorithm.
As a consequence we obtain an efficient algorithm to
approximate the L1-distances with a small relative
error.

For piecewise-polynomial densities we show how to
approximately sample from the distributions resulting
from the stochastic integrals. This also results in an
efficient algorithm to approximate the L1-distances,
although our inability to get exact samples worsens the
dependence on the parameters.

1 Introduction

Consider a finite class F = {f1, f2, . . . , fm} of proba-
bility densities. We want to compute the distance be-
tween every pair of members of F . We are interested
in the case where each member of F is a mixture of
finitely many probability density functions, each having
a particular functional form (e. g., uniform, linear, expo-
nential, normal, etc.). Such classes of distributions are
frequently encountered in machine learning (e. g., mix-
ture models, see [3]) and nonparametric density estima-
tion (e. g., histograms, kernels, see [4]). The number of
distributions in a mixture gives a natural measure of
complexity which we use to express the running time of
our algorithms.

For some classes of distributions exact algorithms
are possible, for example, if each distribution in F
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is a piecewise linear function consisting of n pieces
then we can compute the distances between all pairs
in time Θ(m2n). For other classes of distributions
(for example, mixtures of normal distributions) exact
computation of the distances might not be possible.
Thus we turn to randomized approximation algorithms.
A (δ, ε)-relative-error approximation scheme computes
Djk, j, k ∈ [m] such that with probability at least 1− δ
we have

(∀j, k ∈ [m]) (1 − ε)Djk ≤ ‖fj − fk‖1 ≤ (1 + ε)Djk.

A (δ, ε)-absolute-error approximation scheme computes
Djk, j, k ∈ [m] such that with probability at least 1− δ
we have

(∀j, k ∈ [m]) Djk − ε ≤ ‖fj − fk‖1 ≤ Djk + ε.

A direct application of the Monte Carlo method
([16], see [14]) immediately yields the following absolute-
error approximation scheme. Let Xjk be sampled
according to fj and let Yjk = sgn(fj(Xjk) − fk(Xjk)),
where sgn : R → {−1, 0, 1} is the sign function. The
expected value of Yjk +Ykj is equal to ‖fj−fk‖1, indeed

E[Yjk + Ykj ] =

∫

(fj − fk) sgn(fj − fk)

= ‖fj − fk‖1.

Thus, to obtain a (δ, ε)-absolute-error approxima-
tion scheme it is enough to approximate each Yjk with
absolute error ε/2 and confidence 1 − δ/m2. By the
Chernoff bound O(ε−2 ln(m2/δ)) samples from each Yjk

are enough. (The total number of samples from the fj

is O(mε−2 ln(m2/δ), since we can use the same sample
from fj for Yj1, . . . , Yjm. The total number of evalua-
tions is O(m2ε−2 ln(m2/δ).) The running time of this
algorithm will compare favorably with the exact algo-
rithm if sampling from the densities and evaluation of
the densities at a point can be done fast. (For example,
for piecewise linear densities both sampling and evalua-
tion can be done in O(log n) time, using binary search.)
Note that the evaluation oracle is essential (cf. [2] who
only allow use of sampling oracles).

In the rest of the paper we will focus on the
harder relative-error approximation schemes (since the



L1-distance between two distributions is at most 2, a
relative-approximation scheme immediately yields an
absolute-error approximation scheme). Our motivation
comes from an application (density estimation) which
requires a relative-error scheme [15].

Now we outline the rest of the paper. In Section 2
we review Cauchy random projections; in Section 3 we
point out that for density functions Cauchy random pro-
jections become stochastic integrals; in Section 4 we
show that for piecewise linear functions we can sam-
ple from these integrals (using rejection sampling, with
bivariate student distribution as the envelope) and as
a consequence we obtain efficient approximation algo-
rithm for relative-error all-pairs-L1-distances. Finally,
in Section 5, we show that for piecewise polynomial
functions one can approximately sample from the in-
tegrals, leading to slightly less efficient approximation
algorithms.

2 Cauchy random projections

Dimension reduction (the most well-known example is
the Johnson-Lindenstrauss lemma for L2-spaces [11])
is a natural technique to use here. We are interested
in L1-spaces for which the analogue of the Johnson-
Lindenstrauss lemma is not possible [1, 17] (that is,
one cannot project points into a low dimensional L1-
space and preserve distances with a small relative er-
ror). However one can still project points to short vec-
tors from which L1-distances between the original points
can be approximately recovered using non-linear esti-
mators [13, 10].

A particularly fruitful view of the dimensionality
“reduction” (with non-linear estimators) is through
stable distributions ([12, 10]): given vectors v1, . . . , vm

one defines (dependent) random variables X1, . . . ,Xm

such that the distance of vj and vk can be recovered
from Xj − Xk (for all j, k ∈ [m]). For example, in
the case of L1-distances Xj − Xk will be from Cauchy
distribution C(0, ‖vj − vk‖1), and hence the recovery
problem is to estimate the scale parameter R of Cauchy
distribution C(0, R). This is a well-studied problem
(see, e. g., [8]). We can, for example, use the following
nonlinear estimator (other estimators, e. g., the median
are also possible [10]):

Lemma 2.1. (Lemma 7 of [13]) Let X1, X2, . . . ,Xt

be independent samples from the Cauchy distribution
C(0,D). Define the geometric mean estimator without
bias-correction D̂gm as

D̂gm =

t
∏

j=1

|Xj |1/t.

Then for each ε ∈ [0, 1/2], we have

P
(

D̂gm ∈ [(1 − ε)D, (1 + ε)D]
)

≥ 1 − 2 exp(−tε2/8).

We first illustrate how Cauchy random projections
immediately give an efficient relative-error approxima-
tion scheme for piecewise uniform distributions.

Let F consist of m piecewise uniform densities, that
is, each member of F is a mixture of n distributions
each uniform on an interval. Let a1, . . . , as be the
endpoints of all the intervals that occur in F sorted
in the increasing order (note that s ≤ 2mn). Without
loss of generality, we can assume that each distribution
fj ∈ F is specified by n pairs (bj1, cj1), . . . , (bjn, cjn)
where 1 ≤ bj1 < cj1 < · · · < bjn < cjn ≤ s, and for each
pair (bjℓ, cjℓ) we are also given a number αjℓ which is
the value of fj on the interval [abjℓ

, acjℓ
).

Now we will use Cauchy random projections to
compute the pairwise L1-distances between the fj ef-
ficiently. For ℓ ∈ {1, . . . , s − 1} let Zℓ be indepen-
dent from the Cauchy distribution C(0, aℓ+1 − aℓ). Let
Yℓ = Z1 + · · · + Zℓ−1, for ℓ = 1, . . . , s. Finally, let
(2.1)

Xj :=
n
∑

ℓ=1

αjℓ(Ycjℓ
−Ybjℓ

) =
n
∑

ℓ=1

αjℓ(Zbjℓ
+ · · ·+Zcjℓ−1).

Note that Xj is a sum of Cauchy random variables
and hence has Cauchy distribution (in fact it is from
C(0, 1)). Thus Xj−Xk will be from Cauchy distribution
as well. The coefficient of Zℓ in Xj − Xk is the
difference of fj and fk on interval [aℓ, aℓ+1). Hence
the contribution of Zℓ to Xj − Xk is from Cauchy
distribution C(0,

∫ aℓ+1

aℓ
|fj(x)−fk(x)|dx), and thus Xj−

Xk is from Cauchy distribution C(0, ‖fj−fk‖1). We can
then use the estimator in Lemma 2.1 to compute, with
confidence δ, each ‖fj − fk‖1 with 1 ± ε relative error.

Remark 2.1. In the next section we will generalize
the above approach to piecewise degree-d-polynomial
densities. In this case for each (bjℓ, cjℓ) we are given a
vector αjℓ ∈ R

d+1 such that the value of fj on interval
[abjℓ

, acjℓ
) is given by the following polynomial (written

as an inner product):

fj(x) = (1, x, . . . , xd) · αjℓ.

3 Cauchy motion

A natural way of generalizing the algorithm from the
previous section to arbitrary density functions is to
take infinitesimal intervals. This leads one to the well-
studied area of stochastic integrals w.r.t. symmetric
1-stable Lévy motion (also called Cauchy motion).
Cauchy motion is a stochastic process {X(t), t ∈ R}



such that X(0) = 0, X has independent increments
(i. e., for any t1 ≤ t2 ≤ · · · ≤ tk the random variables
X(t2) − X(t1), . . . ,X(tk) − X(tk−1) are independent),
and X(t) − X(s) is from Cauchy distribution C(0, |t −
s|). Intuitively, stochastic integral of a deterministic
function w.r.t. Cauchy motion is like a regular integral,
except one uses X(t)−X(s) instead of t−s for the length
of an interval (see section 3.4 of [18] for a readable formal
treatment).

We will only need the following basic facts about
stochastic integrals of deterministic functions w.r.t.
Cauchy motion (which we will denote dL(x)), see [18],
Chapter 3.

Fact 3.1. Let f : R → R be a (Riemann) integrable

function. Let X =
∫ b

a
f(x) dL(x). Then X is a random

variable from Cauchy distribution C(0, R) where

(3.2) R =

∫ b

a

|f(x)|dx.

Fact 3.2. Let f1, . . . , fd : R → R be (Riemann)
integrable functions. Let φ = (f1, . . . , fd) : R → R

d.

Let (X1, . . . ,Xd) =
∫ b

a
φ(x) dL(x). Then (X1, . . . ,Xd)

is a random variable with characteristic function

f̂(c1, . . . , cd) = exp

(

−
∫ b

a

|c1f1(x) + · · · + cdfd(x)|dx

)

.

Fact 3.3. Let f, g : R → R be (Riemann) integrable
functions. Let a < b, α, β ∈ R. Then

∫ b

a

(αf + βg) dL(x) = α

∫ b

a

f dL(x) + β

∫ b

a

g dL(x).

Let h(x) = f(a + (b − a)x). Then

∫ b

a

f(x) dL(x) = (b − a)

∫ 1

0

h(x) dL(x).

From facts 3.1 and 3.3 it follows that the problem
of approximating the L1-distances between densities
can be solved if we can evaluate stochastic integrals
w.r.t. Cauchy motion; we formalize this in the following
observation.

Observation 3.1. Let f1, . . . , fm : R → R be prob-
ability densities. Let φ : R → R

m be defined by
φ(x) = (f1(x), . . . , fm(x)). Consider

(3.3) (X1, . . . ,Xm) =

∫ ∞

−∞
φ(x) dL(x).

For all j, k ∈ [m] we have that Xj −Xk is from Cauchy
distribution C(0, ‖fj − fk‖1).

Note that the Xj defined by (2.1) are in fact com-
puting the integral in (3.3). For piecewise uniform den-
sities it was enough to sample from the Cauchy distri-
bution to compute the integral. For piecewise degree-d-
polynomial densities it will be enough to sample from
the following distribution.

Definition 3.1. Let φ : R → R
d+1 be defined by

φ(x) = (1, x, x2, . . . , xd). Let CId(a, b) be the distribu-
tion of Z, where

Z := (Z0, . . . , Zd) :=

∫ b

a

φ(x) dL(x).

Note that given a sample from CId(0, 1), using
O(d2) arithmetic operations we can obtain a sample
from CId(a, b), using Fact 3.3.

Lemma 3.1. Let F consist of m piecewise degree-d-
polynomial densities, each consisting of n pieces (given
as in Remark 2.1). Let t ≥ (8/ε)2 ln(m2/δ) be an
integer. Assume that we can sample from CId(0, 1)
using Td operations. We can obtain (δ, ε)-relative-error
approximation of L1-distances between all pairs in F ,
using O((d2 + Td)mnt + m2t) arithmetic operations.

Proof. For ℓ ∈ {1, . . . , s−1} let Zℓ be independent from
CId(aℓ, aℓ+1) distribution. Let Yℓ = Z1 + · · ·+Zℓ−1, for
ℓ = 1, . . . , s. Finally, for each j ∈ [m], let
(3.4)

Xj :=
n
∑

ℓ=1

αjℓ·(Ycjℓ
−Ybjℓ

) =
n
∑

ℓ=1

αjℓ·(Zbjℓ
+· · ·+Zcjℓ−1).

Note that Ycjℓ
− Ybjℓ

is from C(abjℓ
, acjℓ

) and hence

αjℓ · (Ycjℓ
− Ybjℓ

) =

∫ acjℓ

abjℓ

fj(x) dL(x).

Thus (X1, . . . ,Xm) defined by (3.4) compute (3.3).
For every j, k ∈ [m] we have that Xj − Xk is from

Cauchy distribution

C(0, ‖fj − fk‖1).

If we have t samples from each X1, . . . ,Xm then using
Lemma 2.1 and union bound with probability ≥ 1 − δ
we recover all ‖fj − fk‖1 with relative error ε.

Note that s ≤ 2mn and hence for the Zℓ we used
≤ 2mnt samples from CI(0, 1) distribution, costing us
O((d2 + Td)mnt) arithmetic operations. Computing
the Yℓ takes O(mnt) operations. Computing the Xj

takes O(mnt) operations. The final estimation of the
distances takes O(m2t) operations.





Remark 4.1. Lemma 4.1 is true with C = π23/2 (we
skip the technical proof). The constant π23/2 is tight
(see equation (6.41) with α → 0 and T → 1).

5 Piecewise polynomial functions

Some kernels used in machine learning (e. g., the
Epanechnikov kernel, see [4], p.85) are piecewise poly-
nomial. Thus it is of interest to extend the result from
the previous section to higher-degree polynomials.

For d > 1 we do not know how to sample from
distribution CId(0, 1) exactly. We surmise that one
can (approximately) sample from the distribution in
time O(d2), for example, using a Markov chain. More
precisely,

Conjecture 5.1. There is an algorithm to sample
from a distribution within L1-distance ̺ from CId(0, 1)
in time O(d2 ln(1/̺)).

(Note that Corollary 4.1 gives a stronger result (inde-
pendent of δ) than Conjecture 5.1 for d = 1.)

In the remainder of this section, we describe a less
efficient way of approximately sampling from CId(0, 1).
Let r be an integer. Let Z1, . . . , Zr be independent from
Cauchy distribution C(0, 1/r). Consider the following
distribution, which we call r-approximation of CId(0, 1):
(5.9)

(X0, . . . ,Xd) =
r
∑

j=1

Zj · (1, (j/r), (j/r)2, . . . , (j/r)d).

Now we show that if r is large enough then the distribu-
tion given by (5.9) can be used instead of distribution
CId(0, 1) for our purpose. As a consequence we will ob-
tain the following.

Theorem 5.1. Let F consist of m piecewise degree-d-
polynomial densities, each consisting of n pieces (given
as in Remark 2.1). We can obtain (δ, ε)-relative-error
approximation of L1-distances between all pairs in F ,
using O(m(m+n)d3ε−3 ln(m/δ)) arithmetic operations.

Remark 5.1. Note that for d = 1 Theorem 5.1 gives
worse (in ε) running time that Theorem 4.1. This
slowdown is caused by the additional integration used
to simulate CId(0, 1). Conjecture 5.1, together with
Lemma 3.1, would also give a better result than Theo-
rem 5.1 for all d.

The proof of Theorem 5.1 will be based on the
following result which shows that (5.9) is in some sense
close to CId(0, 1).

Lemma 5.1. Let p = a0 + a1x + · · · + adx
d be a

polynomial of degree d. Let (X0, . . . ,Xd) be sampled

from the distribution given by (5.9), with r ≥ 8d2/ε. Let
W = a0X0 + · · · + adXd. Then W is from the Cauchy
distribution C(0, R), where

(5.10) (1− ε)

∫ 1

0

|p(x)|dx ≤ R ≤ (1 + ε)

∫ 1

0

|p(x)|dx.

We defer the proof of Lemma 5.1 to the end of this
section. Note that having (5.10) instead of (3.2) (which
sampling from CId(0, 1) would yield) will introduce
small relative error to the approximation of the L1-
distances.

Proof. [Proof of Theorem 5.1] The proof is analogous
to the proof of Lemma 3.1. Let r ≥ 8d2/ε. For
ℓ ∈ {1, . . . , s − 1} let Zℓ be independent from r-
approximation of CId(aℓ, aℓ+1) distribution. Let Yℓ =
Z1+· · ·+Zℓ−1, for ℓ = 1, . . . , s. Finally, for each j ∈ [m],
let

Xj :=
n
∑

ℓ=1

αjℓ·(Ycjℓ
−Ybjℓ

) =
n
∑

ℓ=1

αjℓ·(Zbjℓ
+· · ·+Zcjℓ−1).

By Lemma 5.1, for every j, k ∈ [m] we have that
Xj − Xk is from Cauchy distribution C(0, R) where
(1 − ε)‖fj − fk‖1 ≤ R ≤ (1 + ε)‖fj − fk‖1.

If we have t ≥ (8/ε)2 ln(m2/δ) samples from each
X1, . . . ,Xm then using Lemma 2.1 and union bound
with probability ≥ 1 − δ we recover all ‖fj − fk‖1 with
relative error ≈ 2ε.

Note that s ≤ 2mn and hence for the Zℓ we used
≤ 2mnt samples from r-approximation of CI(0, 1) distri-
bution, costing us O((d3/ε)mnt) arithmetic operation.
Computing the Yℓ takes O(mnt) operations. Computing
the Xj takes O(mnt) operations. The final estimation
of the distances takes O(m2t) operations.

To prove Lemma 5.1 we will use the following
Bernstein-type inequality from [9] (see also Theorem 3.1
of [5]).

Theorem 5.2. ([9], p. 735) For any degree d polyno-
mial p,

∫ 1

0

|p′(x)|dx ≤ 8d2

∫ 1

0

|p(x)|dx.

We have the following corollary of Theorem 5.2.

Lemma 5.2. For any polynomial p of degree d, any
r ≥ 8d2, any 0 = x0 < x1 < x2, . . . < xt = 1 with
maxj |xj − xj−1| ≤ 1/r, and any θ1 ∈ [x0, x1], θ2 ∈
[x1, x2], . . . , θt ∈ [xt−1, xt], we have

(1 − 8d2/r)

∫ 1

0

|p(x)|dx ≤
t
∑

j=1

(xj − xj−1)|p(θj)|

≤ (1 + 8d2/r)

∫ 1

0

|p(x)|dx.

(5.11)



Proof. We will use induction on the degree d of the
polynomial. For d = 0 the sum and the integrals in
(5.11) are equal.

Now assume d ≥ 1. For each j ∈ [t], we use the
Taylor expansion of p(x) about θj for x ∈ (xj−1, xj ].
This yields for each x ∈ (xj−1, xj ], p(x) = p(θj) + (x −
θj)p

′(θ′j,x), where θ′j,x ∈ (xj−1, xj ]. Let βj be the point
y ∈ (xj−1, xj ] that maximizes p′(y). We have

∣

∣

∣

∣

∣

∣

t
∑

j=1

(xj − xj−1)|p(θj)| −
∫ 1

0

|p(x)|dx

∣

∣

∣

∣

∣

∣

≤
t
∑

j=1

∫ xj

xj−1

|p(x) − p(θj)|dx

≤
t
∑

j=1

∫ xj

xj−1

|(x − θj)p
′(θ′j,x)|dx

≤ 1

2r

t
∑

j=1

(xj − xj−1)|p′(βj)|.

(5.12)

Since p′ is of degree d − 1, by induction hypothesis the
right-hand side of (5.12) is bounded as follows

1

2r

t
∑

j=1

(xj − xj−1)|p′(βj)|

≤ 1

2r

(

1 +
8(d − 1)2

r

)
∫ 1

0

|p′(x)|dx

≤ (1/r)

∫ 1

0

|p′(x)|dx ≤ (8d2/r)

∫ 1

0

|p(x)|dx.

where in the last inequality we used Theorem 5.2. Hence
the lemma follows.

Proof. [Proof of Lemma 5.1] We have

W = (a0, . . . , ad) ·
r
∑

j=1

Zj(1, (j/r), (j/r)2, . . . , (j/r)d)

=
r
∑

j=1

Zj p(j/r),

where Zj are from Cauchy distribution C(0, 1/r). Thus
W is from Cauchy distribution C(0, R), where

R =
1

r

r
∑

j=1

|p(j/r)|.

Using Lemma 5.2 we obtain (5.10).

Remark 5.2. (In a previous version of this paper we
had a remark here with a wrong interpretation of
Lemma 5.2.)

Remark 5.3. (on L2-distances) For L2-distances the
dimension reduction uses normal distribution instead of
Cauchy distribution. For infinitesimal intervals the cor-
responding process is Brownian motion, which is much
better understood than Cauchy motion. Evaluation of
a stochastic integral of a deterministic function R → R

d

w.r.t. Brownian motion is a d-dimensional gaussian
(whose covariance matrix is easy to obtain), for example

∫ 1

0

(1, x, . . . , xd+1) dLBrown(x)

is from N(0,Σ) where Σ is the (d + 1)× (d + 1) Hilbert
matrix (that is, the ij-th entry of Σ is 1/(i + j − 1)).
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6 Appendix

6.1 Stochastic integral of (constant, linear)
function In this section we give an explicit formula
for the density function of the random variable

(X, Y ) =

∫ 1

0

φ(z) dL(z),

where φ(z) = (1, z), and dL(z) is the Cauchy motion.
We will obtain the density function from the char-

acteristic function. The following result will be used in
the inverse Fourier transform. (We use ℜ to denote the
real part of a complex number.)

Lemma 6.1. Let φ = (φ1, . . . , φn) : R → R
n. Let

Z = (X1, . . . ,Xn) =

∫ 1

0

φ(x) dL(x),

where L is the Cauchy motion. The density function f
of Z is given by
(6.13)

ℜ
(

(n − 1)!

(2π)n

∫ ∞

−∞
. . .

∫ ∞

−∞

2

(A + iB)n
db1 . . .dbn−1

)

,

where

A = A(b1, . . . , bn−1)

:=

∫ 1

0

|b1φ1(x) + · · · + bn−1φn−1(x) + φn(x)| ,

(6.14)

and

B = B(b1, . . . , bn−1, x1, . . . , xn)

:= b1x1 + · · · + bn−1xn−1 + xn.
(6.15)

Proof. The characteristic function of Z is (see, e. g.,
proposition 3.2.2 of [18]):

f̂(a1, . . . , an) = E[exp(i(a1X1 + · · · + anXn))]

= exp

(

−
∫ 1

0

|a1φ1(x) + · · · + anφn(x)|
)

.

We will use the following integral, valid for any A > 0
(see, e. g., [7]):

∫ ∞

0

tn−1 exp(−At) cos(Bt) dt =

(n − 1)!

2

(

1

(A − iB)n
+

1

(A + iB)n

)

.

(6.16)

We would like to compute the inverse Fourier transform
of f̂ , which, since f̂ is symmetric about the origin, is
given by

f(x1, . . . , xn) =
2

(2π)n

∫ ∞

0

∫ ∞

−∞
. . .

∫ ∞

−∞
f̂(a1, . . . , an)

cos(a1x1 + · · · + anxn) da1 . . .dan.

(6.17)

Substitution an = t, an−1 = bn−1t, . . . , a1 = b1t into
(6.17) yields

f(x1, . . . , xn) =
2

(2π)n

∫ ∞

−∞
. . .

∫ ∞

−∞

(

∫ ∞

0

tn−1

exp

(

−t

∫ 1

0

|b1φ1(x) + · · · + bn−1φn−1(x) + φn(x)|
)

cos (t(b1x1 + · · · + bn−1xn−1 + xn)) dt

)

db1 . . .dbn−1.

(6.18)

Note that the inner integral has the same form as (6.16)
and hence we have

f(x1, . . . , xn)

=
(n − 1)!

(2π)n

∫ ∞

−∞
. . .

∫ ∞

−∞

(

1

(A − iB)n
+

1

(A + iB)n

)

db1 . . .dbn−1

= ℜ
(

(n − 1)!

(2π)n

∫ ∞

−∞
. . .

∫ ∞

−∞

2

(A + iB)n
db1 . . .dbn−1

)

,

(6.19)

where A and B are given by (6.14) and (6.15). The
last equality in (6.19) follows from the fact that the
two summands in the integral are conjugate complex
numbers.



Now we apply Lemma 6.1 for the case of two
functions, one constant and one linear.

Proof. [Proof of Theorem 4.2] Plugging n = 2, φ1(x) =
1, and φ2(x) = x into (6.14) and (6.15) we obtain

(6.20) B(b1, x1, x2) = b1x1 + x2

and

(6.21) A(b1) =

{

b1 + 1/2 if b1 ≥ 0,
−b1 − 1/2 if b1 ≤ −1,

b2
1 + b1 + 1/2 otherwise.

Our goal now is to evaluate the integral (6.13). We
split the integral into 3 parts according to the behavior
of A(b1).

We will use the following integral

(6.22)

∫

1

(Sz + T )2
dz = − 1

S(T + Sx)
.

For B = b1x1 + x2 and A = b1 + 1/2 we have A + iB =
b1(1+ix1)+(1/2+ix2). Using (6.22) for A and B given
by (6.20) and (6.21)) we obtain

(6.23)

∫ ∞

0

1

(A + iB)2
db1 =

2

(ix1 + 1)(2ix2 + 1)
,

and
(6.24)
∫ −1

−∞

1

(A − iB)2
db1 =

2

(ix1 − 1)(2i(x1 − x2) − 1)
.

We have (see, e. g., [7]))

∫

1

(z2 + Sz + T )2
dz =

S + 2z

(4T − S2)(T + Sz + z2)

+
4atan

(

(S + 2z)/
√

4T − S2
)

(4T − S2)3/2
.

(6.25)

For A = b2
1 + b1 + 1/2 and B = b1x1 + x2 we have

A + iB = b2
1 + b1(1 + ix1) + (1/2 + x2). Using (6.25) we

obtain

∫ 0

−1

1

(A + iB)2
db1 =

2(ix1 + 1)

(2ix2 + 1)Q
+

2(ix1 − 1)

(2i(x1 − x2) − 1)Q

+ 4
atan

(

ix1+1√
Q

)

− atan
(

ix1−1√
Q

)

Q3/2
,

(6.26)

where Q is given by (4.6).

Summing (6.23), (6.24), and (6.26) we obtain

∫ ∞

−∞

1

(A + iB)2
db1 =

8

Q(1 + x2
1)

+ 4
atan

(

ix1+1√
Q

)

− atan
(

ix1−1√
Q

)

Q3/2
.

(6.27)

We have
∣

∣

∣

∣

ix1 ± 1√
Q

∣

∣

∣

∣

4

=
(1 + x2

1)
2

(1 + x2
1)

2 + (2x1 − 4x2)2
≤ 1.

with equality only if x1 = 2x2. Hence if x1 6= 2x2 then
using (6.43) we have

atan

(

ix1 + 1√
Q

)

−atan

(

ix1 − 1√
Q

)

= atan(iQ/(x1−2x2)),

and by applying

ℜ
(

8

Q(1 + x2
1)

)

=
8

1 + 6x2
1 + x4

1 − 16x1x2 + 16x2
2

in (6.27) we obtain (4.5).
If x1 = 2x2 then Q = 1 + x2

1 and using

atan

(

ix1 + 1√
Q

)

− atan

(

ix1 − 1√
Q

)

= π/2

in (6.27) we obtain (4.7).

6.2 Bounding the CI1(0, 1)-distribution Now we
prove that the multivariate student distribution gives
an efficient envelope for the CI1(0, 1)-distribution.

Proof. [Proof of Lemma 4.1] To simplify the formulas
we use the following substitutions: x1 = u and x2 =
w + u/2. The density g becomes

g′(u, v) :=
1

π

(

1 + u2 + 4w2
)−3/2

.

For w = 0 (which corresponds to x1 = 2x2) the density
f becomes

(6.28)
4/π2

(1 + u2)2
+

1

π(1 + u2)3/2
,

and hence Lemma 4.1 is true, as

(6.28) ≤ (4/π + 1)

(

1

π

(

1 + u2
)−3/2

)

.

For w 6= 0, density (4.5) becomes

f ′(u, v) :=
1

π2

(

4

(1 + u2)2 + (4w)2

+
atan(iM/(2w))

M3
− atan(iM ′/(2w))

M ′3

)

,



where M = (1+u2−4iw)1/2 and M ′ = (1+u2+4iw)1/2.
We are going to show

(6.29) π2f ′(u, v) ≤ Cπg′(u, v).

Note that both sides of (6.29) are unchanged when
we flip the sign of u or the sign of w. Hence we can,
without loss of generality, assume u ≥ 0 and w > 0.

There are unique a > 0 and b > 0 such that
w = ab/2 and u =

√
a2 − b2 − 1 (to see this notice that

substituting b = 2w/a into the second equation yields
u2 + 1 = a2 − 4w2/a2, where the right-hand side is a
strictly increasing function going from −∞ to ∞). Note
that M = a − ib and M ′ = a + ib. Also note that

(6.30) a2 ≥ b2 + 1.

After the substitution equation (6.29) simplifies as
follows

4

(a2 + b2)2
+

1

(a2 + b2)3

(

(a + ib)3 atan

(

1

a
+

i

b

)

+(a − ib)3 atan

(

1

a
− i

b

)

)

≤ C

(a2 − b2 + a2b2)3/2
.

(6.31)

Now we expand (a + ib)3 and (a − ib)3 and simplify
(6.31) into

4

(a2 + b2)2
+

1

(a2 + b2)3

(

(a3 − 3ab2)

(

atan

(

1

a
+

i

b

)

+ atan

(

1

a
− i

b

))

−i(b3 − 3a2b)

(

atan

(

1

a
+

i

b

)

− atan

(

1

a
− i

b

))

)

≤ C

(a2 − b2 + a2b2)3/2
.

(6.32)

Now we substitute a = 1/A and b = 1/B into (6.32)
and obtain

4A4B4

(A2 + B2)2
+

A3B3

(A2 + B2)3

(

(B3 − 3A2B) (atan (A + iB) + atan (A − iB))

− i(A3 − 3AB2) (atan (A + iB) − atan (A − iB))

)

≤ C · A3B3

(B2 − A2 + 1)3/2
.

(6.33)

Note that A > 0 and B > 0 and the constraint (6.30)
becomes

(6.34) B2 ≥ A2(1 + B2).

Multiplying both sides of (6.33) by (A2 + B2)3/(AB)3

we obtain

4AB(A2 + B2) + (B3 − 3A2B)
(

atan (A + iB)

+ atan (A − iB)
)

− i(A3 − 3AB2)
(

atan (A + iB)

− atan (A − iB)
)

≤ C · (A2 + B2)6

(B2 − A2 + 1)3/2
.

(6.35)

Finally, we substitute A = T sinα and B = T cos α with
T ≥ 0. Note that the constraint (6.34) becomes

(6.36) (T sinα)2 ≤ cos(2α)

(cos α)2
,

and hence α is restricted to [0, π/4).
Equation (6.35) then becomes

2T 4 sin(2α) + T 3 cos(3α) (atan (A + iB) + atan (A − iB))

+ iT 3 sin(3α) (atan (A + iB) − atan (A − iB))

≤ C · T 6

(T 2 cos(2α) + 1)3/2
.

(6.37)

We prove (6.37) by considering three cases.

CASE: T < 1. We can use (6.43) to simplify (6.37)
as follows

2T sin(2α) + cos(3α) atan

(

2T sin(α)

1 − T 2

)

− sin(3α) atanh

(

2T cos(α)

1 + T 2

)

≤ C · T 3

(T 2 cos(2α) + 1)3/2
.

(6.38)

For z ≥ 0 we have atanh(z) ≥ z ≥ atan(z) and hence
to prove (6.38) it is enough to show

2T sin(2α)(1 − T 4) + (1 + T 2) cos(3α) (2T sin(α))

− (1 − T 2) sin(3α) (2T cos(α))

≤ C · T 3(1 − T 4)

(T 2 cos(2α) + 1)3/2
,

(6.39)



which is implied by the following inequality which holds
for T ≤ 8/9:

−2T 2 sin(2α) + 2 sin(4α) ≤ 2 ≤ C · 2465/6561

23/2

≤ C · (1 − T 4)

(T 2 cos(2α) + 1)3/2
.

(6.40)

For 1 > T ≥ 8/9 we directly prove (6.39)

2T sin(2α) + cos(3α) atan

(

2T sin(α)

1 − T 2

)

− sin(3α) atanh

(

2T cos(α)

1 + T 2

)

≤ 2 + π/2

≤ C · 512/729

23/2

≤ C · T 3

(T 2 cos(2α) + 1)3/2
.

CASE: T > 1. We can use (6.44) and (6.45) to
simplify (6.37) as follows

2T sin(2α) + cos(3α)

(

π + atan

(

2T sin(α)

1 − T 2

))

− sin(3α) atanh

(

2T cos(α)

1 + T 2

)

≤ C · T 3

(T 2 cos(2α) + 1)3/2
.

(6.41)

From (6.36) we have T sin(α) ≤ 1 and hence
2T sin(2α) ≤ 4. Therefore (6.41) can be proved as fol-
lows.

2T sin(2α) + cos(3α)

(

π + atan

(

2T sin(α)

1 − T 2

))

− sin(3α) atanh

(

2T cos(α)

1 + T 2

)

≤ 4 + 3π/2 ≤ C

23/2
≤ C · T 3

(T 2 cos(2α) + 1)3/2
.

CASE: T = 1. Equation (6.37) simplifies as follows

2 sin(2α) + (π/2) cos(3α) − sin(3α) atanh (cos(α))

≤ C

(cos(2α) + 1)3/2
.

(6.42)

The left-hand side is bounded from above by 2 + π/2
which is less than C/23/2 which lower-bounds the right-
hand side of (6.42).

6.3 Basic properties of trigonometric functions
In this section we list the basic properties of trigono-
metric functions that we used. For complex parameters
these are multi-valued functions for which we choose the
branch in the standard way. The logarithm of a com-
plex number z = (cos α + i sinα)et, where α ∈ (−π, π],
and t ∈ R is iα + t. The inverse tangent of a complex
number z ∈ C \ {±i} is the solution of tan(x) = z with
ℜ(x) ∈ (−π/2, π/2). In terms of the logarithm we have

atan(z) :=
1

2
i (ln(1 − iz) − ln(1 + iz)) .

The inverse hyperbolic tangent function is defined anal-
ogously, for z ∈ C \ {±1} we have

atanh(z) :=
1

2
(ln(1 + z) − ln(1 − z)) = −i atan(iz).

For non-negative real numbers z we have the following
inequality

atanh(z) ≥ z ≥ atan(z).

The atan function (even as a multi-valued function)
satisfies

tan(atan(x) + atan(y)) =
x + y

1 − xy
,

for any values of x, y ∈ C \ {±i}, with xy 6= 1.
For a2 + b2 < 1 the real part of atan(a + bi) is from

(−π/4, π/4). Hence
(6.43)

|x| < 1 ∧|y| < 1 =⇒ atan(x)+atan(y) = atan

(

x + y

1 − xy

)

.

For a ≥ 0 and a2 + b2 ≥ 1 the real part of atan(a + bi)
is from [π/4, π/2).

a ≥ 0 ∧ a2 + b2 > 1 =⇒
atan(a + bi) + atan(a − bi) = π + atan(2a/(1 − a2 − b2)).

(6.44)

For a ≥ 0 the real part of atan(a + bi) is from [0, π/2).
Hence for any a, b with a + ib 6= ±i we have
(6.45)

atan(a + bi) − atan(a − bi) = atan

(

2ib

1 + a2 + b2

)

.




